Parkinson’s disease (PD) is a degenerative disorder of the central nervous system. It was first described in 1817 by James Parkinson, a British physician who published a paper on what he called “the shaking palsy.” In this paper, he set forth the major symptoms of the disease that would later bear his name.

 

In This Article:

Parkinson’s Disease Statistics
What is Parkinson’s Disease?
Symptoms of Parkinson’s disease
What Causes Parkinson’s Disease?

Parkinson’s Disease Statistics

Researchers believe that at least 500,000 people in the United States currently have Parkinson’s Disease, although some estimates are much higher. Society pays an enormous price for Parkinson’s Disease. The total cost to the nation is estimated to exceed $6 billion annually. The risk of Parkinson’s Disease increases with age, so analysts expect the financial and public health impact of this disease to increase as the population gets older.

What is Parkinson’s Disease?

Parkinson’s disease belongs to a group of conditions called movement disorders.

Symptoms of Parkinson’s disease may include

  • Trembling of hands, arms, legs, jaw and face
  • Stiffness of the arms, legs and trunk
  • Slowness of movement
  • Poor balance and coordination

These symptoms usually begin gradually and worsen with time. As they become more pronounced, patients may have difficulty walking, talking, or completing other simple tasks. Not everyone with one or more of these symptoms has Parkinson’s Disease, as the symptoms sometimes appear in other diseases as well.

Parkinson’s Disease is both chronic, meaning it persists over a long period of time, and progressive, meaning its symptoms grow worse over time. It is not contagious. Although some Parkinson’s Disease cases appear to be hereditary, and a few can be traced to specific genetic mutations, most cases are sporadic – that is, the disease does not seem to run in families. Many researchers now believe that Parkinson’s Disease results from a combination of genetic susceptibility and exposure to one or more environmental factors that trigger the disease.

Parkinson’s Disease is the most common form of parkinsonism, the name for a group of disorders with similar features and symptoms. Parkinson’s Disease is also called primary parkinsonism or idiopathic PD. The term idiopathic means a disorder for which no cause has yet been found. While most forms of parkinsonism are idiopathic, there are some cases where the cause is known or suspected or where the symptoms result from another disorder. For example, parkinsonism may result from changes in the brain’s blood vessels.

What Causes the Disease?

Parkinson’s disease occurs when nerve cells, or neurons, in an area of the brain known as the substantia nigra die or become impaired. Normally, these neurons produce an important brain chemical known as dopamine. Dopamine is a chemical messenger responsible for transmitting signals between the substantia nigra and the next “relay station” of the brain, the corpus striatum, to produce smooth, purposeful movement. Loss of dopamine results in abnormal nerve firing patterns within the brain that cause impaired movement. Studies have shown that most Parkinson’s patients have lost 60 to 80 percent or more of the dopamine-producing cells in the substantia nigra by the time symptoms appear. Recent studies have shown that people with Parkinson’s Disease also have loss of the nerve endings that produce the neurotransmitter norepinephrine. Norepinephrine, which is closely related to dopamine, is the main chemical messenger of the sympathetic nervous system, the part of the nervous system that controls many automatic functions of the body, such as pulse and blood pressure. The loss of norepinephrine might help explain several of the non-motor features seen in Parkinson’s Disease, including fatigue and abnormalities of blood pressure regulation.

Many brain cells of people with Parkinson’s Disease contain Lewy bodies – unusual deposits or clumps of the protein alpha-synuclein, along with other proteins. Researchers do not yet know why Lewy bodies form or what role they play in development of the disease. The clumps may prevent the cell from functioning normally, or they may actually be helpful, perhaps by keeping harmful proteins “locked up” so that the cells can function.

Scientists have identified several genetic mutations associated with Parkinson’s Disease, and many more genes have been tentatively linked to the disorder. Studying the genes responsible for inherited cases of Parkinson’s Disease can help researchers understand both inherited and sporadic cases. The same genes and proteins that are altered in inherited cases may also be altered in sporadic cases by environmental toxins or other factors. Researchers also hope that discovering genes will help identify new ways of treating Parkinson’s Disease.

Although the importance of genetics in Parkinson’s is increasingly recognized, most researchers believe environmental exposures increase a person’s risk of developing the disease. Even in familial cases, exposure to toxins or other environmental factors may influence when symptoms of the disease appear or how the disease progresses. There are a number of toxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, or MPTP (found in some kinds of synthetic heroin), that can cause parkinsonian symptoms in humans. Other, still-unidentified environmental factors also may cause Parkinson’s Disease in genetically susceptible individuals.

Viruses are another possible environmental trigger for Parkinson’s Disease. People who developed encephalopathy after a 1918 influenza epidemic were later stricken with severe, progressive Parkinson’s-like symptoms. A group of Taiwanese women developed similar symptoms after contracting herpes virus infections. In these women, the symptoms, which later disappeared, were linked to a temporary inflammation of the substantia nigra.

Several lines of research suggest that mitochondria may play a role in the development of Parkinson’s Disease. Mitochondria are the energy-producing components of the cell and are major sources of free radicals – molecules that damage membranes, proteins, DNA, and other parts of the cell. This damage is often referred to as oxidative stress. Oxidative stress-related changes, including free radical damage to DNA, proteins, and fats, have been detected in brains of PD patients.

Other research suggests that the cell’s protein disposal system may fail in people with Parkinson’s Disease, causing proteins to build up to harmful levels and trigger cell death. Additional studies have found evidence that clumps of protein that develop inside brain cells of people with Parkinson’s Disease may contribute to the death of neurons, and that inflammation or overstimulation of cells (because of toxins or other factors) may play a role in the disease. However, the precise role of the protein deposits remains unknown. Some researchers even speculate that the protein buildup is part of an unsuccessful attempt to protect the cell. While mitochondrial dysfunction, oxidative stress, inflammation, and many other cellular processes may contribute to Parkinson’s Disease, the actual cause of the dopamine cell death is still undetermined.
 

Articles Related to Parkinson’s Disease: